50 Point Quiz on Derivative Rules and Tangent Lines

- Steps to finding tangent line equations
 1. Find f'(x) (the derivative)
 - 2. Substitute the x-coordinate of the point given into f'(x) to find the slope of the tangent line (m).
 - 3. Use the slope of the tangent line and the coordinates of the point to find the equation of the tangent line.
 - Example: $x^{6} x^{4} 3x^{3}$; (2, 24) 1. $6x^{5}-4x^{3}-9x^{2}$ 2. $6(2)^{5}-4(2)^{3}-9(2)^{2} = 124 = m$ 3. 24 = 124 (2) + b 24 = 248 + b -248 - 248 -224 = by = 124x - 224
 - Position function formula for an object projected in the air/free falling object:
 S(t) = -16t² + v₀t + s₀; s is height
 - AROC average rate of change (over a time period, like slope)
 - IROC instantaneous rate of change (Derivative)
 - f'(x) is the instantaneous velocity as it is the derivative of the position function